31 research outputs found

    The Economics of Knowledge Regulation: An Empirical Analysis of Knowledge Flows

    Get PDF
    Successful innovation depends on the management of a firm’s knowledge base. This paper empirically investigates the determinants of knowledge regulation. Using a unique survey dataset, the analysis suggests that R&D managers do not leak knowledge randomly, but rather regulate knowledge consciously. We find that the source and the channel of knowledge inflows impact knowledge regulation. The findings reveal that the more a firm profits from knowledge inflows from competitors, the fewer actions it takes to regulate outgoing knowledge. We do not find that the extent of knowledge inflows from collaborating firms impacts knowledge regulation. However, the type of channel being used to acquire knowledge matters. Compared to public channels, the different types of private channels used to access knowledge inflow and the type of the competitive relationship influence the firms’ decision to regulate knowledge outflow in the following way: concerning relationships with competitors, firms regulate knowledge outflow more when using formal channels, but less when using informal channels (although a significant difference is not found with the latter); concerning collaborative relationships, firms regulate knowledge outflow less regardless of whether they are using formal or informal private channels compared to using public channels. Presumably firms that acquire knowledge from competing firms through formal private channels compared to public channels, try to establish opaque and soundproof fences to surround them, whereas firms that acquire knowledge from collaborating firms through formal or informal private channels do not want to restrict circulation, but rather facilitate inter-firm knowledge exchange. Our results have important implications for academics and R&D managers alike

    Information-Sharing in Academia and the Industry: A Comparative Study

    Get PDF
    This paper investigates how scientists decide whether to share information with their colleagues or not. Detailed data on the decisions of 1,694 bio-scientists allow to detect similarities and differences between academia-based and industry-based scientists. Arguments from social capital theory are applied to explain why individuals share information even at (temporary) personal cost. In both realms, the results suggest that the likelihood of sharing decreases with the competitive value of the requested information. Factors related to social capital, i.e., expected reciprocity and the extent to which a scientist’s community conforms to the norm of open science, either directly affect information-sharing or moderate competitive interest considerations on information-sharing. The effect depends on the system to which a scientist belongs.information-sharing; social capital; reciprocity; open science; bio-sciences; IP protection mechanisms

    Information-Sharing in Academia and the Industry: A Comparative Study

    Get PDF
    This paper investigates how scientists decide whether to share information with their colleagues or not. Detailed data on the decisions of 1,694 bio-scientists allow to detect similarities and differences between academia-based and industry-based scientists. Arguments from social capital theory are applied to explain why individuals share information even at (temporary) personal cost. In both realms, the results suggest that the likelihood of sharing decreases with the competitive value of the requested information. Factors related to social capital, i.e., expected reciprocity and the extent to which a scientist’s community conforms to the norm of open science,either directly affect information-sharing or moderate competitive interest considerations on information-sharing. The effect depends on the system to which a scientist belongs.information-sharing; social capital; reciprocity; open science; bio-sciences; IP protection mechanisms

    To Be Financed or Not…: The Role of Patents for Venture Capital Financing

    Get PDF
    This paper investigates how patent applications and grants held by new ventures improve their ability to attract venture capital (VC) financing. We argue that investors are faced with considerable uncertainty and therefore rely on patents as signals when trying to assess the prospects of potential portfolio companies. For a sample of VC-seeking German and British biotechnology companies we have identified all patents filed at the European Patent Office (EPO). Applying hazard rate analysis, we find that in the presence of patent applications, VC financing occurs earlier. Our results also show that VCs pay attention to patent quality, financing those ventures faster which later turn out to have high-quality patents. Patent oppositions increase the likelihood of receiving VC, but ultimate grant decisions do not spur VC financing, presumably because they are anticipated. Our empirical results and interviews with VCs suggest that the process of patenting generates signals which help to overcome the liabilities of newness faced by new ventures. --biotechnology,intellectual property rights,patents,R&D and venture capital

    To Be Financed or Not … - The Role of Patents for Venture Capital Financing

    Get PDF
    This paper investigates how patent applications and grants held by new ventures improve their ability to attract venture capital (VC) financing. We argue that investors are faced with considerable uncer-tainty and therefore rely on patents as signals when trying to assess the prospects of potential portfolio companies. For a sample of VC-seeking German and British biotechnology companies we have identified all patents filed at the European Patent Office (EPO). Applying hazard rate analysis, we find that in the presence of patent applications, VC financing occurs earlier. Our results also show that VCs pay attention to patent quality, financing those ventures faster which later turn out to have high-quality patents. Patent oppositions increase the likelihood of receiving VC, but ultimate grant decisions do not spur VC financing, presumably because they are anticipated. Our empirical results and interviews with VCs suggest that the process of patenting generates signals which help to overcome the liabilities of newness faced by new ventures.patents; venture capital; intellectual property rights; R&D; biotechnology

    Information-Sharing in Academia and the Industry: A Comparative Study

    Get PDF
    This paper investigates how scientists decide whether to share information with their colleagues or not. Detailed data on the decisions of 1,694 bio-scientists allow to detect similarities and differences between academia-based and industry-based scientists. Arguments from social capital theory are applied to explain why individuals share information even at (temporary) personal cost. In both realms, the results suggest that the likelihood of sharing decreases with the competitive value of the requested information. Factors related to social capital, i.e., expected reciprocity and the extent to which a scientist’s community conforms to the norm of open science, either directly affect information-sharing or moderate competitive interest considerations on information-sharing. The effect depends on the system to which a scientist belongs

    Distant Search, but Local Implementation? Using the Crowd’s Evaluation to Overcome Organizational Limitations in the Selection of Crowdsourced Ideas

    Get PDF
    Organizations increasingly apply crowdsourcing to search for novel ideas. However, in selecting ideas, organizations face the challenge to select the best suggestions without prematurely rejecting the distant solutions they initially set out to find. We argue that local search leads to differences between crowd and organizational evaluators. Further, organizational evaluation is restricted by the use of formal evaluation criteria. We propose that crowds can alleviate this by detecting ideas otherwise overlooked by organizational evaluators. Our analysis is based on 869 crowdsourced ideas evaluated by the crowd and by organizational evaluators. Our results suggest that the favorite ideas of the crowd are more novel than the organization’s favorites. We also find that the crowd can be used to detect ideas that were, despite their potential, initially overlooked but later implemented by the organization. We contribute to literature on local search and its repercussions in the evaluation of crowdsourced ideas for implementation

    Specific and General Information Sharing Among Academic Scientists

    Get PDF
    We provide theoretical and empirical evidence on the factors that influence the willingness of academic scientists to share research results. We distinguish between two types of sharing, specific sharing in which a researcher shares her data or materials with another and general sharing in which scientists report results to the entire community (as in conference presentations). We present two simple games in which scientists research a problem of scientific merit (with an associated prize of academic and/or commercial value). In both cases, the scientists have intermediate research results but none has solved the entire problem.We test these models using a unique survey of bio-scientists in the UK and Germany regarding their willingness to "share." Our results generally support both models. In both, sharing is negatively related to competition and the importance of patents. In other respects they differ markedly. For example, large teams are more likely to share specifically but less likely to share generally. Rank does not matter for general sharing, but it does for specific sharing, where untenured faculty are less likely to share. One important implication is that policies designed to enhance sharing must be tailored to the type of sharing.

    Cluster Performance reconsidered: Structure, Linkages and Paths in the German Biotechnology Industry, 1996-2003

    Get PDF
    This paper addresses the evolution of biotechnology clusters in Germany between 1996 and 2003, paying particular attention to their respective composition in terms of venture capital, basic science institutions and biotechnology firms. Drawing upon the significance of co-location of "money and ideas", the literature stressing the importance of a cluster's openness and external linkages, and the path dependency debate, the paper aims to analyse how certain cluster characteristics correspond with its overall performance. After identifying different cluster types, we investigate their internal and external interconnectivity in comparative manner and draw on changes in cluster composition. Our results indicate that the structure, i.e. to which group the cluster belongs, and the openness towards external knowledge flows deliver merely unsystematic indications with regard to a cluster's overall success. Its ability to change composition towards a more balanced ratio of science and capital over time, on the other hand, turns out as a key explanatory factor. Hence, the dynamic perspective proves effective illuminating cluster growth and performance, where our explorative findings provide a promising avenue for further evolutionary research

    What Stimulates Researchers to Make Their Research Usable? Towards an Openness Approach

    Get PDF
    Ambiguity surrounding the effect of external engagement on academic research has raised questions about what motivates researchers to collaborate with third parties. We argue that what matters for society is research that can be absorbed by users. We define openness as a willingness by researchers to make research more usable by external partners by responding to external influences in their own research practices. We ask what kinds of characteristics define those researchers who are more open to creating usable knowledge. Our empirical study analyses a sample of 1583 researchers working at the Spanish Council for Scientific Research (CSIC). Results demonstrate that it is personal factors (academic identity and past experience) that determine which researchers have open behaviours. The paper concludes that policies to encourage external engagement should focus on experiences which legitimate and validate knowledge produced through user encounters, both at the academic formation career stage as well as through providing ongoing opportunities to engage with third parties.The data used for this study comes from the IMPACTO project funded by the Spanish Council for Scientific Research - CSIC (Ref. 200410E639). The work also benefited from a mobility grant awarded by Eu-Spri Forum to Julia Olmos Penuela & Paul Benneworth for her visiting research to the Center of Higher Education Policy Studies. Finally, Julia Olmos Penuela also benefited from a post-doctoral grant funded by the Generalitat Valenciana (APOSTD-2014-A-006).Olmos-Peñuela, J.; Benneworth, P.; Castro-Martínez, E. (2015). What Stimulates Researchers to Make Their Research Usable? Towards an Openness Approach. Minerva. 53(4):381-410. https://doi.org/10.1007/s11024-015-9283-4S381410534Abreu, Maria, Vadim Grinevich, Alan Hughes, and Michael Kitson. 2009. Knowledge exchange between academics and the business, public and third sectors. Cambridge: Centre for Business Research and UK-IRC.Aghion, Philippe, Mathias Dewatripont, and Jeremy C. Stein. 2008. Academic freedom, private-sector focus, and the process of innovation. RAND Journal of Economics 39: 617–635.Ajzen, Icek. 2001. Nature and operation of attitudes. Annual Review of Psychology 52(1): 27–58.Alrøe, Hugo Fjelsted, and Erik Steen Kristensen. 2002. Towards a systemic research methodology in agriculture: Rethinking the role of values in science. Agriculture and Human Values 19(1): 3–23.Audretsch, David B., Werner Bönte, and Stefan Krabel. 2010. Why do scientists in public research institutions cooperate with private firms. In DRUID Working Paper, 10–27.Baldini, Nicola, Rosa Grimaldi, and Maurizio Sobrero. 2007. To patent or not to patent? A survey of Italian inventors on motivations, incentives, and obstacles to university patenting. Scientometrics 70(2): 333–354.Bandura, Albert. 1977. Social learning theory. Englewood Cliffs, NJ: Prentice-Hall.Barnett, R. 2009. Knowing and becoming in the higher education curriculum. Studies in Higher Education 34(4): 429–440.Becher, Tony. 1994. The significance of disciplinary differences. Studies in Higher Education 19(2): 151–161.Becher, Tony, and Paul Trowler. 2001. Academic tribes and territories: Intellectual enquiry and the culture of disciplines. McGraw-Hill International.Bekkers, Rudi, and Isabel Maria Bodas Freitas. 2008. Analysing knowledge transfer channels between universities and industry: To what degree do sectors also matter? Research Policy 37(10): 1837–1853.Belderbos, René, Martin Carree, Bert Diederen, Boris Lokshin, and Reinhilde Veugelers. 2004. Heterogeneity in R&D cooperation strategies. International Journal of Industrial Organization 22(8): 1237–1263.Benner, Mats, and Ulf Sandström. 2000. Institutionalizing the triple helix: Research funding and norms in the academic system. Research Policy 29(2): 291–301.Bercovitz, Janet, and Maryann Feldman. 2008. Academic entrepreneurs: Organizational change at the individual level. Organization Science 19(1): 69–89.Berman, Elizabeth Popp. 2011. Creating the market university: How academic science became an economic engine. Princeton University Press.Bleiklie, Ivar, and Roar Høstaker. 2004. Modernizing research training-education and science policy between profession, discipline and academic institution. Higher Education Policy 17(2): 221–236.Bozeman, Barry, Daniel Fay, and Catherine P. Slade. 2013. Research collaboration in universities and academic entrepreneurship: The-state-of-the-art. The Journal of Technology Transfer 38(1): 1–67.Collini, Stefan. 2009. Impact on humanities: Researchers must take a stand now or be judged and rewarded as salesmen. The Times Literary Supplement 5563: 18–19.D’Este, Pablo, and Markus Perkmann. 2011. Why do academics engage with industry? The entrepreneurial university and individual motivations. The Journal of Technology Transfer 36(3): 316–339.D’Este, Pablo, Oscar Llopis, and Alfredo Yegros. 2013. Conducting pro-social research: Cognitive diversity, research excellence and awareness about the social impact of research: INGENIO (CSIC-UPV) Working Paper Series.Deem, Rosemary, and Lisa Lucas. 2007. Research and teaching cultures in two contrasting UK policy contexts: Academic life in education departments in five English and Scottish universities. Higher Education 54(1): 115–133.DiMaggio, Paul J., and Walter W. Powell. 1983. The iron cage revisited: Institutional isomorphism and collective rationality in organizational fields. American Sociological Review 48(2): 147–160.Downing, David B. 2005. The knowledge contract: Politics and paradigms in the academic workplace. Lincoln: Nebraska University of Nebraska Press.Donovan, Claire. 2007. The qualitative future of research evaluation. Science and Public Policy 34(8): 585–597.Durning, Bridget. 2004. Planning academics and planning practitioners: Two tribes or a community of practice? Planning Practice and Research 19(4): 435–446.Edquist, Charles. 1997. System of innovation approaches: Their emergence and characteristics. In Systems of innovation: Technologies, institutions and organizations, ed. C. Edquist, 1–35. London: Pinter.Etzkowitz, Henry, and Loet Leydesdorff. 2000. The dynamics of innovation: from National Systems and “Mode 2” to a Triple Helix of university–industry–government relations. Research Policy 29(2): 109–123.Fromhold-Eisebith, Martina, Claudia Werker, and Marcel Vojnic. 2014. Tracing the social dimension in innovation networks. In The social dynamics of innovation networks, eds. Roel Rutten, Paul Benneworth, Frans Boekema, and Dessy Irawati. London: Routledge (in press).Geuna, Aldo, and Alessandro Muscio. 2009. The governance of university knowledge transfer: A critical review of the literature. Minerva 47(1): 93–114.Gibbons, Michael, Camille Limoges, Helga Nowotny, Simon Schwartzman, Peter Scott, and Martin Trow. 1994. The new production of knowledge: The dynamics of science and research in contemporary societies. London: Sage.Gläser, Jochen. 2012. How does Governance change research content? On the possibility of a sociological middle-range theory linking science policy studies to the sociology of scientific knowledge. Technical University Berlin. Technology Studies Working Papers. http://www.ts.tu-berlin.de/fileadmin/fg226/TUTS/TUTS-WP-1-2012.pdf . Accessed 16 Feb 2015.Goethner, Maximilian, Martin Obschonka, Rainer K. Silbereisen, and Uwe Cantner. 2012. Scientists’ transition to academic entrepreneurship: Economic and psychological determinants. Journal of Economic Psychology 33(3): 628–641.Gulbrandsen, Magnus, and Jens-Christian Smeby. 2005. Industry funding and university professors’ research performance. Research Policy 34(6): 932–950.Haeussler, Carolin, and Jeannette Colyvas. 2011. Breaking the ivory tower: Academic entrepreneurship in the life sciences in UK and Germany. Research Policy 40(1): 41–54.Hessels, Laurens K., Harro van Lente, John Grin, and Ruud E.H.M. Smits. 2011. Changing struggles for relevance in eight fields of natural science. Industry and Higher Education 25(5): 347–357.Hessels, Laurens K., and Harro Van Lente. 2008. Re-thinking new knowledge production: A literature review and a research agenda. Research Policy 37(4): 740–760.Hoye, Kate, and Fred Pries. 2009. ‘Repeat commercializers’, the ‘habitual entrepreneurs’ of university–industry technology transfer. Technovation 29(10): 682–689.Jacobson, Nora, Dale Butterill, and Paula Goering. 2004. Organizational factors that influence university-based researchers’ engagement in knowledge transfer activities. Science Communication 25(3): 246–259.Jain, Sanjay, Gerard George, and Mark Maltarich. 2009. Academics or entrepreneurs? Investigating role identity modification of university scientists involved in commercialization activity. Research Policy 38(6): 922–935.Jasanoff, Sheila, and Sang-Hyun Kim. 2013. Sociotechnical imaginaries and national energy policies. Science as Culture 22(2): 189–196.Jensen, Pablo. 2011. A statistical picture of popularization activities and their evolutions in France. Public Understanding of Science 20(1): 26–36.Kitcher, Philip. 2001. Science, truth, and democracy. Oxford: Oxford University Press.Knorr-Cetina, Karin. 1981. The manufacture of knowledge: An essay on the constructivist and contextual nature of science. Oxford: Pergamon Press.Kronenberg, Kristin, and Marjolein Caniëls. 2014. Professional proximity in research collaborations. In The social dynamics of innovation networks, eds. Roel Rutten, Paul Benneworth, Frans Boekema, and Dessy Irawati. London: Routledge (in press).Krueger, Rob, and David Gibbs. 2010. Competitive global city regions and sustainable development’: An interpretive institutionalist account in the South East of England. Environment and planning A 42: 821–837.Lam, Alice. 2011. What motivates academic scientists to engage in research commercialization: ‘Gold’, ‘ribbon’ or ‘puzzle’? Research Policy 40(10): 1354–1368.Landry, Réjean, Malek Saïhi, Nabil Amara, and Mathieu Ouimet. 2010. Evidence on how academics manage their portfolio of knowledge transfer activities. Research Policy 39(10): 1387–1403.Lee, Alison, and David Boud. 2003. Writing groups, change and academic identity: Research development as local practice. Studies in Higher Education 28(2): 187–200.Lee, Yong S. 1996. ‘Technology transfer’ and the research university: A search for the boundaries of university–industry collaboration. Research Policy 25(6): 843–863.Lee, Yong S. 2000. The sustainability of university–industry research collaboration: An empirical assessment. The Journal of Technology Transfer 25(2): 111–133.Leisyte, Liudvika, Jürgen Enders, and Harry De Boer. 2008. The freedom to set research agendas—illusion and reality of the research units in the Dutch Universities. Higher Education Policy 21(3): 377–391.Louis, Karen Seashore, David Blumenthal, Michael E. Gluck, and Michael A. Stoto. 1989. Entrepreneurs in academe: An exploration of behaviors among life scientists. Administrative Science Quarterly 34(1): 110–131.Lowe, Philip, Jeremy Phillipson, and Katy Wilkinson. 2013. Why social scientists should engage with natural scientists. Contemporary Social Science 8(3): 207–222.Martín-Sempere, María José, Belén Garzón-García, and Jesús Rey-Rocha. 2008. Scientists’ motivation to communicate science and technology to the public: Surveying participants at the Madrid Science Fair. Public Understanding of Science 17(3): 349–367.Martin, Ben. 2003. The changing social contract for science and the evolution of the university. In Science and innovation: Rethinking the rationales for funding and governance, eds. A. Geuna, A.J. Salter, and W.E. Steinmueller, 7–29. Cheltenhan: Edward Elgar.Merton, Robert K. 1973. The sociology of science: Theoretical and empirical investigations. Chicago: University of Chicago Press.Miller, Thaddeus R., and Mark W. Neff. 2013. De-facto science policy in the making: how scientists shape science policy and why it matters (or, why STS and STP scholars should socialize). Minerva 51(3): 295–315.Muthén, Bengt O. 1998–2004. Mplus Technical Appendices. Muthén & Muthén. Los Angeles, CA.: Muthén & Muthén.Nedeva, Maria. 2013. Between the global and the national: Organising European science. Research Policy 42(1): 220–230.Neff, Mark William. 2014. Research prioritization and the potential pitfall of path dependencies in coral reef science. Minerva 52(2): 213–235.Nelson, Richard R. 2001. Observations on the post-Bayh-Dole rise of patenting at American universities. The Journal of Technology Transfer 26(1): 13–19.Nowotny, Helga, Peter Scott, and Michael Gibbons. 2001. Re-thinking science: Knowledge and the public in an age of uncertainty. Cambridge: Polity Press.Olmos-Peñuela, Julia, Paul Benneworth, and Elena Castro-Martínez. 2014a. Are ‘STEM from Mars and SSH from Venus’? Challenging disciplinary stereotypes of research’s social value. Science and Public Policy 41: 384–400.Olmos-Peñuela, Julia, Elena Castro-Martínez, and Manuel Fernández-Esquinas. 2014b. Diferencias entre áreas científicas en las prácticas de divulgación de la investigación: un estudio empírico en el CSIC. Revista Española de Documentación Científica. doi: 10.3989/redc.2014.2.1096 .Ouimet, Mathieu, Nabil Amara, Réjean Landry, and John Lavis. 2007. Direct interactions medical school faculty members have with professionals and managers working in public and private sector organizations: A cross-sectional study. Scientometrics 72(2): 307–323.Perkmann, Markus, Valentina Tartari, Maureen McKelvey, Erkko Autio, Anders Brostrom, Pablo D’Este, Riccardo Fini, et al. 2013. Academic engagement and commercialisation: A review of the literature on university-industry relations. Research Policy 42(2): 423–442.Philpott, Kevin, Lawrence Dooley, Caroline O’Reilly, and Gary Lupton. 2011. The entrepreneurial university: Examining the underlying academic tensions. Technovation 31(4): 161–170.Rutten, Roel, and Frans Boekema. 2012. From learning region to learning in a socio-spatial context. Regional Studies 46(8): 981–992.Sarewitz, Daniel, and Roger A. Pielke. 2007. The neglected heart of science policy: reconciling supply of and demand for science. Environmental Science & Policy 10(1): 5–16.Sauermann, Henry, and Paula Stephan. 2013. Conflicting logics? A multidimensional view of industrial and academic science. Organization Science 24(3): 889–909.Schein, Edgar H. 1985. Organizational culture and leadership: A dynamic view. San Francisco, CA: Jossey-Bass.Shane, Scott. 2000. Prior knowledge and the discovery of entrepreneurial opportunities. Organization Science 11(4): 448–469.Spaapen, Jack, and Leonie van Drooge. 2011. Introducing ‘productive interactions’ in social impact assessment. Research Evaluation 20(3): 211–218.Stokes, Donald E. 1997. Pasteur’s quadrant: Basic science and technological innovation. Washington, DC: Brookings Institution Press.Tartari, Valentina, and Stefano Breschi. 2012. Set them free: scientists’ evaluations of the benefits and costs of university–industry research collaboration. Industrial and Corporate Change 21(5): 1117–1147.Tinker, Tony, and Rob Gray. 2003. Beyond a critique of pure reason: From policy to politics to praxis in environmental and social research. Accounting, Auditing & Accountability Journal 16(5): 727–761.van Rijnsoever, Frank J., Laurens K. Hessels, and Rens L.J. Vandeberg. 2008. A resource-based view on the interactions of university researchers. Research Policy 37(8): 1255–1266.Venkataraman, Sankaran. 1997. The distinctive domain of entrepreneurship research: An editor’s perspective. Advances in Entrepreneurship, Firm Emergence, and Growth 3: 119–138.Verspagen, Bart. 2006. University research, intellectual property rights and European innovation systems. Journal of Economic Surveys 20(4): 607–632.Villanueva-Felez, Africa, Jordi Molas-Gallart, and Alejandro Escribá-Esteve. 2013. Measuring personal networks and their relationship with scientific production. Minerva 51(4): 465–483.Watermeyer, Richard. 2015. Lost in the ‘third space’: the impact of public engagement in higher education on academic identity, research practice and career progression. European Journal of Higher Education (online first, doi: 10.1080/21568235.2015.1044546 ).Weingart, Peter. 2009. Editorial for Issue 47/3. Minerva 47(3): 237–239.Ziman, John. 1996. ‘Postacademic science’: Constructing knowledge with networks and norms. Science Studies 1: 67–80.Zomer, Arend H., Ben W.A. Jongbloed, and Jürgen Enders. 2010. Do spin-offs make the academics’ heads spin? The impacts of spin-off companies on their parent research organisation. Minerva 48(3): 331–353
    corecore